E298A/EECS290B Problem Set 4 (due 4/21/05)

- 1. Plot the Debye length, λ_D , and plasma frequencies, ω_e and ω_i , as a function of the number of ions/electrons per cm³ over the range $10^2-10^{12}\text{cm}^{-3}$. You may assume an Ar plasma with ions singly charged.
- 2. Plot the mean electron velocity over the same parameter range.
- 3. Given an isotropic neutral atom flux distribution, with F_0 the flux received at a plane surface, calculate the flux and position dependent flux distribution across the bottom of an infinitely long rectangular cross section trench as a function of trench aspect ratio.
- 4. Calculate the average flux at the bottom of the trench as a function of aspect ratio.
- 5. Using the expression derived in problem 4, plot the average etching rate at the bottom of the trench for values of r of 0.01 to 0.5 assuming that the etch rate of a planar surface can be expressed as

$$E_0 \propto \frac{cI}{1+r}, \quad r = \frac{cI}{sF_0}$$

I is the ion flux, F_0 is the neutral atom flux, c is a reaction coefficient and s is the sticking coefficient.

6. Describe a potential etch chemistry and etch condition for etching Mo, and explain your choices.